ICMA Workshop, Munich, October 2015

Update RFID technology in ISO Cards

By Thomas Decker
<table>
<thead>
<tr>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current frequency ranges & market volumes</td>
</tr>
<tr>
<td>Antenna design basics</td>
</tr>
<tr>
<td>Applications</td>
</tr>
<tr>
<td>Common silicon suppliers & silicon types</td>
</tr>
<tr>
<td>Available antenna & inlay technology</td>
</tr>
<tr>
<td>Challenges on the card manufacturing side</td>
</tr>
</tbody>
</table>
RF Frequencies in ISO Cards

<table>
<thead>
<tr>
<th>frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF 125 KHz</td>
</tr>
<tr>
<td>MF 13.56 MHz</td>
</tr>
<tr>
<td>HF 860-960 MHz</td>
</tr>
<tr>
<td>VHF 10M</td>
</tr>
<tr>
<td>UHF 1G</td>
</tr>
<tr>
<td>10G</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>card operating frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980 200m</td>
</tr>
<tr>
<td>1990 2000m</td>
</tr>
<tr>
<td>2007 50m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>commercial market launch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980 200m</td>
</tr>
<tr>
<td>1990 2000m</td>
</tr>
<tr>
<td>2007 50m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>units per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>200m</td>
</tr>
<tr>
<td>2000m</td>
</tr>
<tr>
<td>50m</td>
</tr>
</tbody>
</table>

volume trend
125 KHz – Low Frequency (LF)

- basics about LF antennas
 - inductive coupling
 - 200-300 turn coil

- common application
 - enterprise Access Control
antenna & inlay technology

- only wire wound antenna / air-coil
- inlays mainly PVC
- Typical inlay thickness 400 micron (allowing 60/40 PVC/PET card structure)
125 KHz – Low Frequency

- common IC supplier
 - Atmel (Temic)
 (T5577 – read write)
 - EM Microelectronics
 (EM 4200 – read only)
 - NXP (Hitag 1 & 2)

- challenges in the card manufacturing process
 - high contend of copper in the card body
 (→ warped cards; traces in the print)
 - final card structure often with PET (60% PVC / 40% PET)
 (→ adhesion in lamination; matching of bipolar orientated PET)
 - typically configuration, formatting and encoding required
 (modulation: ASK, FSK, PSK; format: 26, 35, … bit; encoding: site-code, card ident.)
basics about HF antennas

inductive coupling

4 – 7 turn coil

common application

- transit / automatic fare collection (AFC)
- payment, open & closed loop
- corporate access control
- government ID
- hotel, leisure & entertainment
antenna & inlay technology

- **wire wound antenna / air-coil**
 - high durability (++)
 - limited possibilities for antenna tuning (--)

- **wire embedded antenna**
 - high durability (Cu wire / no bridge) (++)
 - precise antenna tuning via length & pitch (++)
 - high flexibility design / format changes (++)
 - low impact on card surface (++)
 - available on most substrates (++)
 - Typical inlay thickness (module) 400 micro with migration towards 310 micron
13.56 MHz – High Frequency

- etched antenna (subtractive technology)
 - only on PET substrate → adhesion challenges (--)
 - “bridge” as potential failure cause (--)
 - antenna tuning on batch level complicate (--)
 - antenna traces in print (--)
 - no module visibility (++)
 - lead time & set-up cost for custom. formats (--)
 - low cost in high volume (++)
 - very thin inlay possible (direct die attach) (++)

“bridge”, required for etched, printed & additive HF antennas
13.56 MHz – High Frequency

- **printed antenna**
 - high flexibility on substrate type (++)
 - very thin prelam possible (direct die attach) (++)
 - no module visibility (++)
 - high cost due to silver paste (++)
 - antenna tuning on batch level complicate (--)
 - “bridge” as potential failure cause (--)
 - durability of antenna tracks (--)

- **additive antenna (galvanic)**
 - high investment & set-up cost (--)
 - high flexibility on substrate type (++)
 - good RF-performance = low production UPH (--)
 - “bridge” as potential failure cause (--)
 - antenna tuning on batch level complicate (--)
 - no module visibility (++)
 - theoretically low cost per unit in high volume (++)
 - very thin prelam possible (direct die attach) (++)
13.56 MHz – High Frequency (HF)

- common IC suppliers
 - **payment “closed loop”**: Sony (Felica), NXP (Mifare & SmartMX)
 Infineon (SLE 77&78)
 - **payment “open loop”**: Infineon (SLE 77&78), NXP (SmartMX)
 Samsung (S3), ST (ST 23,31), Inside (MicroPass)
 - **transit / automatic fare collection**: NXP (Mifare & SmartMX), Sony (Felica), ST (Calypso), Infineon (SLE 66, SLE 77&78, CIPURSE)
 - **corporate access control**: NXP (Mifare), Inside (PicoPass), Legic (MIM 256,1024)
 - **eID (ISO card)**: NXP (Mifare & SmartMX); Infineon (SLE 77 & 78)
 ST (ST 23,31)
challenges in the card manufacturing process

- lamination adhesion in case of etched inlays
 (PET substrate → hot lamination only with adhesives)

- yield loss control in case of etched & printed antennas
 (typically no protective module around IC)

- trend to higher value ICs → yield loss control becomes more crucial

- module visibility in print
 (improving by migration trend to smaller modules like MOA8, MCS8)
basics about UHF antennas

common application
- government ID
- toll collection
- parking
- access in leisure & entertainment
- crowd control
- future: secure access??
antenna & inlay technology

- etched Al antenna - “solid” PET inlay
 - low cost (++)
 - only on PET substrate (––)
 - lamination challenges due to PET substrate (––)
 - logistics / lead times for customized formats (––)
 - antenna traces in print (––)

- etched Al antenna - PET inlets
 - low cost (++)
 - fair lamination properties with small antennas (++)
 - easier logistics compared to “solid” PET inlay (++)
 - antenna traces in print (––)

- printed antenna
 - flexible on substrates (PVC, PC, PET-G)
 → mono-block structure (++)
 - high cost due to silver paste (––)
 - no antenna traces in print (++)
860–960 MHz – Ultra High Frequency

- additive antenna
 - High set-up cost (++)
 - different substrates (++)
 - logistics / lead times for customized formats (--)
 - in high volume competitive to etched antennas (++)
 - antenna traces in print (--)

- wire embedded antenna
 - relatively high cost (--)
 - design limitation (--)
 - different substrates (PVC, PC, Teslin, PET-G) (++)
 - no traces in print (++)
 - short lead times for customized formats (++)
860–960 MHz – Ultra High Frequency

- common IC suppliers
 - Impinj (Monza family)
 - NXP (UCODE family; UCODE DNA → secure UHF!)
 - Alien (Higgs family)

- challenges in the card manufacturing process
 - Adhesion issues with “full face” PET-inlays
 - Testing! (challenging in sheet format – cross reads)
Migration of legacy access control systems from LF to HF

Common inlay technologies:
- HF wire embedding / LF coil-winding
- HF coil winding / LF coil winding
Future market for hotel, leisure & entertainment
(i.e. tracking & payment; tracking & access; gated-access & building access)

Common inlay technologies:
- HF wire embedding / UHF printed or etched
- HF “air-coil” / UHF printed or etched

HF / UHF “combo-card” (today)

HF / UHF dual-frequency IC (tomorrow)
Thank you very much

For Questions:

thomas.decker@smartrac-group.com