“Fundamentals about RFID in contactless ISO-cards”

Uwe Adamczyk, VP Sales-EMEA
Content

Base Technologies

- Working principle / physics behind
- Applications
- Available antenna & inlay technology
- Common silicon suppliers & silicon types
RFID Technologies in ISO Cards

Base Technologies

- **Pure Contactless**
 - Only RF interface
 - Transit
 - Access Control
 - Closed Loop Payment
 - Open Loop Payment
 - eID / eDL

- **Hybrid Technologies**
 - Combination of
 - c'less & dual interface
 - c'less & c'less
 - RF powered components
 - Combination of:
 - Access Control
 - Crowed Tracking
 - Closed loop payment
 - Open loop payment

- **Dual Interface**
 - RF Interface
 - Contact Interface
 - Open Loop Payment
 - Transit
 - Access Control
 - eID

Predominant Application Fields
Pure Contactless / Single Transponder Solutions
RF Frequencies in ISO Cards

<table>
<thead>
<tr>
<th>frequency (Hz)</th>
<th>LF</th>
<th>HF</th>
<th>UHF</th>
</tr>
</thead>
<tbody>
<tr>
<td>card operating frequencies</td>
<td>125 KHz</td>
<td>13.56 MHz</td>
<td>860-960 MHz</td>
</tr>
<tr>
<td>commercial market launch</td>
<td>1980</td>
<td>1990</td>
<td>2007</td>
</tr>
<tr>
<td>units per year</td>
<td>200mio.</td>
<td>1000mio.</td>
<td>50mio.</td>
</tr>
</tbody>
</table>

volume trend
125 KHz – Low Frequency (LF)

- basics about LF antennas
 - inductive coupling
 - 200-300 turn copper wire coil

- common application
 - enterprise Access Control
 - …but no WW standard for data transmission
 - (all proprietary solutions)
antenna & PRELAM® technology

- only wire wound antenna / air-coil
- PRELAM® mainly PVC
- Typical PRELAM® thickness 400 micron (allowing 60% / 40% PVC/PET card structure for composite cards) no thinner PRELAM® possible, due to quite thick wire wound antenna)
common IC suppliers

- Atmel *(former Temic)*
 (T5577 – read/write)

- EM Microelectronics
 (EM 4200 – read-only // EM4450 – read/write)

- NXP
 (Hitag-1 / Hitag-2 / Hitag-S)
13.56 MHz – High Frequency (HF)

- basics about HF antennas

 - inductive coupling

 4 – 7 turn coil

- common application

 - transit / automatic fare collection (AFC)
 - payment, open & closed loop
 - eGovernment (eID / ePP / eDL…)
 - corporate access control
 - hotel, leisure & entertainment

- world-wide standards:

 - ISO 14443
 - ISO 15693
antenna & PRELAM® technology

- **wire wound antenna / air-coil**
 - high durability (++)
 - limited possibilities for antenna tuning (--) few

- **wire embedded antenna**
 - high durability (CU wire (flexibility) / no bridge) (++)
 - precise antenna tuning via length & pitch (++)
 - high flexibility design / format changes (++)
 - low impact on card surface (++)
 - available on most substrates (PVC / PET-G / PC) (++)
 - Typical PRELAM® thickness (module) 400 micro with migration towards 310 micron
13.56 MHz – High Frequency

- **etched antenna (subtractive technology)**
 - only on PET substrate → adhesion challenges (--)
 - “bridge” as potential failure cause (--)
 - antenna tuning on batch level complicate (--)
 - antenna traces visible in card-print (--)
 - no module visibility (++)
 - lead time & set-up cost for customized formats (--)
 - low cost in high volume (++)
 - very thin inlay possible (direct die attach) (++)

“bridge”, required for etched, printed & additive HF antennas
13.56 MHz – High Frequency

- **printed antenna**
 - high flexibility on substrate type (++)
 (even paper possible !)
 - very thin PRELAM® possible (direct die attach) (++)
 - no module visibility (++)
 - high cost due to silver paste (-)
 - antenna tuning on batch level complicate (-)
 - “bridge” as potential failure cause (-)
 - durability of antenna tracks (-)

- **additive antenna (additive / galvanic technology)**
 - high investment & set-up cost (-)
 - high flexibility on substrate type (++)
 - good RF-performance = low production UPH (-)
 - “bridge” as potential failure cause (-)
 - antenna tuning on batch level complicate (-)
 - no module visibility (++)
 - theoretically low cost per unit in (very) high volume (++)
 - very thin PRELAM® possible (direct die attach) (++)
common IC suppliers

- **payment “closed loop”:**
 - Sony (Felica), NXP (Mifare- & SmartMX-Family)
 - Infineon (SLE77- / SLE78-Family)

- **payment “open loop”:**
 - Infineon (SLE77- / SLE78-Family), NXP (SmartMX-Family)
 - Samsung (S3), ST (ST 23,31), Inside (MicroPass)

- **transit / automatic fare collection:**
 - NXP (Mifare- & SmartMX-Family), Sony (Felica), ST (Calypso),
 - Infineon (SLE66- / SLE77- / SLE78- / CIPURSE-Family)

- **access control:**
 - NXP (Mifare-Family), Inside (PicoPass),
 - Legic (prime / advant-family)

- **eID (ISO card):**
 - NXP (SmartMX-Family), Infineon (SLE77- / SLE78-Family)
 - ST (ST23- / ST31-Family)
basics about UHF antennas

common application
- government ID
- toll collection
- parking
- access in leisure & entertainment
- crowd control
- future: secure access??

but no WW harmonized frequency:
- USA: 915 MHz (4W EIRP)
- EU: 869 MHz (0,5W / 2W ERP)
- Japan: 950-962 MHz
868–960 MHz – Ultra High Frequency (UHF)

- antenna & inlay technology
 - etched Al antenna - “solid” PET inlay
 - low cost (++)
 - only on PET substrate (- -)
 - lamination challenges due to PET substrate (- -)
 - logistics / lead times for customized formats (- -)
 - antenna traces in print (- -)
 - etched Al antenna - PET inlets
 - low cost (++)
 - fair lamination properties with small antennas (++)
 - easier logistics compared to “solid” PET inlay (++)
 - antenna traces in print (- -)
 - printed antenna
 - flexible on substrates (PVC, PC, PET-G)
 → mono-block structure (++)
 - high cost due to silver paste (- -)
 - no antenna traces in print (++)
868–960 MHz – Ultra High Frequency

- **additive antenna**
 - High set-up cost (---)
 - Different substrates (++)
 - Logistics / lead times for customized formats (---)
 - In high volume competitive to etched antennas (++)
 - Antenna traces in print (---)

- **wire embedded antenna**
 - Relatively high cost (---)
 - Antenna-design limitation (---)
 - Different substrates (PVC, PC, Teslin, PET-G) (++)
 - No traces in print (++)
 - Short lead times for customized formats (++)
common IC suppliers

- Impinj (Monza family)
- NXP (UCODE family; new: UCODE DNA → secure UHF!)
- Alien (Higgs family)
Dual Interface Technology *(13.56 MHz only!)*
High volume process
Available via most major vendors
No supply chain restrictions
Good electrical performance

Electrical interconnection
- Conductive tape (ACF)
- Conductive paste
- Conductive polymer

Aging of interconnection & potential loss of RF interface
Challenging process control
Electrical / mechanical connection
 - TC bonding
 - Soldering

Low cost on equipment side
- Very good RF performance
- High electrical reliability
- High quality optical card appearance

Challenging implementation into card manufacturing process
- Requires good yield control on card manufacturing side
AUTOMATED SOLDERING PROCESS

- Electrical / mechanical connection
 - Laser soldering
 - Hot soldering
- High electrical reliability
- Very good RF performance
- High investment for equipment
- Relatively slow process
INDUCTIVE COUPLING TECHNOLOGY (CoM)

- Inductive coupling

- Low cost on equipment side
- Easy to implement by every card manufacturer
- High electrical reliability
- Cost & time savings in approval process (TA/LOA)
- High throughput & easy scalable

- Reduced RF performance
- Card durability (delamination) *
- Restricted art work / card design *
- Restricted supply chain (IP & business models)

* Depending on inlay / antenna technology

18 October 2016
COMMON ICs FOR DUAL INTERFACE APPLICATIONS

- **Infineon:**
 SLE77 / SLE78-Family (Solid Flash)

- **NPX:**
 SmartMX P5- / P60-Family (EEPROM; Flash-version coming)

- **STM:**
 ST21- / ST31-Family (EEPROM; Flash version coming)

- **SAMSUNG:**
 S3CT9KW (EEPROM)

- **Inside Secure:**
 Micropass 6323/6303 (EEPROM)
Hybrid Technologies (multiple ICs)
Migration of legacy access control systems from LF to HF

Common inlay technologies:
- HF wire embedding / LF coil-winding
- HF coil winding / LF coil winding
- HF wire embedding / HF wire embedding
High end access control – logical & physical (migration) (i.e. FIPS 201 CACC)

Common inlay technologies:
- HF wire-embedding / LF “air-coil”
- combination of 2 technologies in 1 Card
 (e.g. employee ID card for access payment, etc.)

- even combinations on one antenna possible!
 further technologies (contact module embedding / 4-line embossing) possible!
- Future market for hotel, leisure & entertainment
 (i.e. tracking & payment; tracking & access; gated-access & building access)

- Common inlay technologies:
 - HF wire embedding / UHF printed or etched
 - HF “air-coil” / UHF printed or etched

HF / UHF “combo-card”
(today)

HF / UHF dual-frequency IC (e.g. EM4423)
(tomorrow)
Powered Components
13.56 MHz (HF) & 13.56 MHz powered components

Dual-Interface with Dynamic-CVV

Dual-Interface with RF-powered LED
Thank you very much!

uwe.adamczyk@smartrac-group.com